
Caribherp	Database
Sarah	Hanson

Aim
To	build	a	spatially-enabled	object	relational	database	to	store	spatial

and	non-spatial	data	about	reptiles	and	amphibians	of	the	Caribbean	to

support	scientific	research	for	Temple’s	Center	for	Biodiversity.

Data	Types	&	Sources
The	data	sources	include	a	mix	of	shapefiles	and	CSV	tables.	These

data	include:

Polygon	shapefiles	which	represent	the	ranges	of	~1000

Caribbean	reptiles	and	amphibians

–	created	by	Hedge’s	Lab	using	ArcGIS	Desktop	10.4	in

accordance	with	IUCN	Red	List	Range	Mapping	Standards

–	attribute	tables	store	important	information	about	each

population	including	presence	and	origin	(i.e.	extinct	vs.	extant

&	native	vs.	introduced)

http://www.biodiversitycenter.org/
http://www.amphibians.org/wp-content/uploads/2013/09/Red-List-Mapping-standards-ARLA-Jan2014-web-version.pdf

Point	data	(Museum	specimens	and/or	observation	points)

–	Multiple	tables	that	each	contain	point	data.	Some	are

personal	collections,	others	are	large	public	databases,	and	yet

others	are	points	that	have	been	digitized	from	paper	maps.	All

records	with	lat,	long	coordinates	will	be	pushed	into	a	table	in

the	database	called	observation_points.	Records	that	were

digitzed	from	scanned	maps	will	be	coded	with	a	number	‘2’	in

the	accuracy	column	to	indicate	that	the	accuracy	is	low.

–	point	shapefiles	of	observations	digitized	from	scanned	maps

in	various	literature	sources

Caribbean	Basemap

–	Modified	version	of	GADM’s	World	Basemap

–	Generated	new	attribute	table	to	include	island	name,	smaller

island	group,	larger	island	group	or	archipelago	name,	and

country	(i.e.	Martinique	Island,	Martinque	Bank,	Lesser

Antilles,	France)	to	support	analysis	at	different	scales

–	Digitized	~50	small	islands	using	satellite	imagery	basemap

from	ESRI	for	islands	that	were	not	represented	by	the

basemap	but	had	species	records	from	them

Trait	data	-	measurements	about	museum	specimens	(i.e.	snout

width,	forearm	length,	etc.)

Integrated	Taxonomic	Information	System	(ITIS)	Species	List

–	database	with	reliable,	but	not	always	up-to-date	information

on	species	names	and	their	hierarchical	classification

–	Because	our	center	does	a	lot	of	work	in	taxonomy,

discovering	and	reclassifying	species,	their	species	list	was	not

able	to	be	used	as	a	primary	key	in	our	species	table,	but	as	an

attribute	instead	in	case	anyone	should	need	to	link	our	species

http://www.gadm.org/version2

to	other	tables	that	ITIS	provides

Entity	Relationship	Diagram	|
Data	Model

Figure	1.	Entity	Relationship	Diagram	(ERD)	created	using	Vertabelo.

Table	Explanations
The	above	ERD	does	not	show	the	staging	tables	for	clarity.	When

importing	new	trait	data	and	range	data,	we	use	staging	tables	to

clean	the	data	and	assign	their	respective	sp_id	values	before	pushing

them	into	their	final	resting	place	(trait_data	and	sp_range).

sp_id
The	most	central	table	to	the	database	is	the	sp_list	table,	which	stores

each	species	name	along	with	a	serial	id	number,	called	sp_id,	which	is

the	primary	key.	Also	in	this	table	is	the	corresponding	ITIS	id	number,

if	applicable,	the	date	it	was	added	to	the	database,	and	the	class	to

which	it	belongs	(i.e.	amphibia	or	reptilia)	which	is	a	foreign	key	from

the	class	table.	The	class	is	determined	by	matching	the	first	part	of

the	species	name,	called	the	genus,	to	the	genus_class	table	which	has

a	list	of	genera	with	their	corresponding	class	(class	is	a	foreign	key	to

a	small	table	called	class	to	make	sure	there	aren’t	spelling	errors).

For	this	reason,	we	parsed	the	species	name	field	into	two	columns

called	genus	and	epithet.	This	table	(genus_class)	was	created

manually	to	start,	and	moving	forward	will	probably	need	to	be

updated	manually,	adding	new	genera	and	assigning	their	appropriate

classes	as	well.	The	sp_id	is	used	as	a	foreign	key	in	the	range	table

(sp_range),	observation	table	(specimen_list),	and	the	trait	table

(trait_data).

itis
longnames	table	from	the	ITIS	database.	Includes	just	their	species

name	and	their	id	number	that	they	assign	to	it.	This	id	number	is

stored	as	a	foreign	key	in	the	sp_list	table.

class_list

Includes	just	one	column	which	list	the	classes	of	life.	Used	as	a	FK	in

the	genus_class	table	and	sp_id	table	to	reinforce	referential	integrity.

genus_class
List	of	genera	and	their	respective	classes.	Class	is	a	FK	from	the

class_list	table.	This	table	was	created	manually	from	all	of	the	genera

in	the	sp_range	table	currently	in	the	database	and	will	likely	need	to

be	updated	manually	to	add	new	genera	to	the	table.	This	table	is	used

to	determine	the	class	stored	in	the	sp_id	table.	In	the	future,	we	may

drop	this	table	and	have	database	users	manually	add	the	class	name

to	the	sp_id	table,	that	or	upload	a	much	larger	table	in	its	place	from

another	database	like	NCBI	Taxonomy.

staging_table
Table	used	to	clean	the	range	data	as	it	is	imported	into	the	database.

Once	edited,	only	a	subset	of	the	columns	get	pushed	into	the	sp_range

table.	In	particular,	we	add	a	sp_id	column,	determine	the	sp_id	by

matching	the	binomial	column	(species	name)	to	the	species	column	in

the	sp_id	table,	add	a	class	column,	parse	the	binomial	column	into

species	and	epithet,	and	then	determine	the	class	by	matching	the

genus	name	from	the	staging	table	to	the	genus	column	in	the

genus_class	table.	Once	cleaned,	all	ranges	with	a	sp_id	will	be	pushed

into	the	sp_range	table	and	then	dropped	from	the	staging_table.	The

remaining	entries	will	need	to	be	edited	to	have	a	correct,	matching

species	name	(binomial),	or	if	it	is	determined	that	the	ranges	are	of	a

new	species	to	the	database,	they	will	need	to	be	added	to	the	sp_id

table	using	a	SELECT	INTO	statement.

sp_range
This	table	stores	the	ranges	of	all	species.	It	includes	the	geometry	of	a

range,	the	sp_id	of	the	species	range	it	represents,	attributes	about

that	range	like	whether	the	species	was	introduced	or	native	to	that

area,	whether	or	not	it	is	still	present	or	thought	to	be	extirpated,	who

created	the	range,	and	the	source	of	the	range	information.

specimen_list_hedges
This	is	a	table	of	information	about	specimens	of	Dr.	Blair	Hedges.

These	specimens	include	specimen_id	value,	which	is	the	primary	key.

The	attributes	stored	in	this	table	include	things	like	date	collected,

location	collected	(x,	y),	collector	name,	among	other	details	about

when	and	where	it	was	found	and	the	condition	in	which	it	was	found

in.	In	this	table,	spec_id	is	the	primary	key	because	each	individual

animal	should	only	be	entered	once	and	must	all	be	unique.

trait_data
This	table	stores	measurements	about	particular	specimens	(a	specific

lizard).	The	measurements	can	be	linked	to	a	species	by	joining	the

specimen_id	number	to	the	specimen_list_hedges	table	which	stores

the	sp_id.	In	this	table,	we	use	a	serial	primary	key,	called	gid,	because

many	times	a	specimen	is	measured	many	times	over	by	different

people.	Important	attributes	in	this	table	include	the	trait

measurements	(like	snout	width,	body	length,	etc.)	as	well	as	who

measured	it	and	on	what	date.

observation_points
This	table	is	a	table	stores	data	about	locations	where	species	were

observed,	including	attributes	like	sp_id,	lat/long	coordinates,

elevation,	collector	name,	specimen_id,	as	well	as	source.	Any	record

from	the	specimen_list_hedges	table	that	has	a	lat,	long	coordinate	is

stored	in	this	table,	along	with	other	collection	data	with	coordinates

including	public	record	information	from	GBIF,	as	well	as	point	data

that	was	digitized	from	scanned	maps	in	Schwartz	&	Henderson	(1991)

and	Rodríguez	Schettino	(2013).	This	table	will	not	be	able	to	be	edited

by	users,	because	it	is	actually	a	compilation	of	all	of	the	individual

tables	of	point	data	(not	currently	listed	-	forthcoming).

vw_sp_range
This	is	a	table	was	created	by	saving	the	output	of	a	join	between	the

sp_range	table	and	the	sp_id	table.	It	is	a	copy	of	the	sp_range	table

with	the	binomial	and	class	values	added	from	the	sp_id	table	so	that	a

user	can	query	a	single	range	table	using	the	species	name,	rather

than	id,	and	class.	While	this	de-normalized	our	database,	it	is	very

useful	for	non-SQL	experts.	This	table	also	will	not	be	able	to	be	edited

by	any	user	to	preserve	the	integrity	of	the	database.

basemap
This	table	is	a	basemap	of	the	world,	which	was	generated	from	a

polygon	shapefile.	While	the	geometry	is	accurate	at	the	global	scale,	it

http://www.gbif.org/occurrence
https://books.google.com/books?hl=en&lr=&id=0x_hxEolYUAC&oi=fnd&pg=PR16&dq=AMPHIBIANS+AND+REPTILES+OF+THE+WEST+INDIES:++DESCRIPTIONS,+DISTRIBUTIONS,+AND+NATURAL+HISTORY&ots=dBMeFbuDSi&sig=saSs699MwvKMAnxS4XWSbxc7goY#v=onepage&q=AMPHIBIANS%20AND%20REPTILES%20OF%20THE%20WEST%20INDIES%3A%20%20DESCRIPTIONS%2C%20DISTRIBUTIONS%2C%20AND%20NATURAL%20HISTORY&f=false
https://repository.si.edu/handle/10088/22148

only	has	detailed	information	about	the	identification	of	the	land	area,

such	as	island	name,	island	group,	country	etc.	for	the	Caribbean.

Outside	of	the	Caribbean,	the	only	information	stored	about	the	land

feature,	in	addition	to	it’s	geometry,	is	the	country	name.

Data	Visualization
This	database	can	easily	be	queried	to	show	ranges	of	species	by	many

features	including	their	location	in	space,	by	joining	the	range	table

top	the	basemap	using	a	spatial	intersection,	or	by	the	species’

attributes,	like	their	name,	class,	origin,	or	presence.	To	see	an

example	of	one	data	visualization	possibility,	see	below.

FROM	vw_sp_range	AS	r

JOIN	basemap	AS	b

ON	ST_Intersects	(r.geom,	b.geom)

WHERE	b.sm_isl_gr	=	'Hispaniola	Banormal

nk'	AND	r.class	ILIKE	'amphibia'	AND	r.presence	=	1	AND	r

.origin	!=	3;

Figure	2.	SQL	Query	on	vw_sp_range	table	to	yield	all	extant,	native

amphibians	from	the	island	of	Hispaniola.

Figure	3.	Layer	imported	to	QGIS	using	the	DB	Manager	and	query

shown	above.

Conclusion
In	short,	this	database	enables	trait	data	about	reptiles	and

amphibians	to	be	analyzed	spatially	using	their	respective	range	maps

which	is	a	significant	achievement.	In	addition,	both	ranges	and	traits

can	be	analyzed	using	countless	other	spatial	datasets,	like

environmental	data	on	climate	variables	like	temperature,	rainfall,	and

land	use.	In	the	future,	this	database	will	serve	as	the	back-end	to	a

program	which	researchers	and	students	will	use	to	enter	new

measurements	about	specimens	into	the	trait_data	table	of	the

database.

Appendix

First,	existing	datasets	(spatial	and	non-spatial)	were	imported	into	the

Caribherp	database	using	the	DB	Manager	in	QGIS.	These	datasets

included:

–	shapefile	containing	of	all	Caribbean	range	maps	(table	called

shapefile_upload)

–	basemap	(polygon	shapefile)

–	observation_points	(point	shapefile)

–	specimen_list_hedges	and	trait_data	(CSV	tables)

–	SET	search_path	=	caribherp2,public;

Push	data	from	shapefile_upload	(ranges)	into	a
staging	table	for	range	data
CREATE	TABLE	staging_table

(

		id	serial	PRIMARY	KEY,

		sp_id	int,

		geom	geometry(MultiPolygon,4326),

		id_no	int,

		binomial	text,

		presence	integer,

		origin	integer,

		compiler	text,

		year	integer,

		citation	text,

		source	text,

		dist_comm	text,

		island	text,

		subspecies	text,

		subpop	text,

		tax_commen	text,

		data_sens	text,

		sens_comm	text,

		legend	text,

		seasonal	integer,

		class	text,

		genus	text

)

;

INSERT	INTO	staging_table	(

geom

,	id_no

,	binomial

,	presence

,	origin

,	compiler

,	year

,	citation

,	source

,	dist_comm

,	island

,	subspecies

,	subpop

,	tax_commen

,	data_sens

,	sens_comm

,	legend

,	seasonal

)

SELECT

geom

,	id_no	::	integer

,	binomial

,	presence

,	origin

,	compiler

,	year

,	citation

,	source

,	dist_comm

,	island

,	subspecies

,	subpop

,	tax_commen

,	data_sens

,	sens_comm

,	legend

,	seasonal

FROM	shapefile_upload;

Cleaning
VACUUM	ANALYZE	staging_table;

Create	class_list	table
CREATE	TABLE	class_list	(

class	text	PRIMARY	KEY

);

Cleaning
VACUUM	ANALYZE	class_list;

VACUUM	ANALYZE	basemap;

Adding	class	values	to	class	table
INSERT	INTO	class	(class_list)

VALUES	('amphibia');

INSERT	INTO	class	(class_list)

VALUES	('reptilia');

INSERT	INTO	class	(class_list)

VALUES	('mammalia');

INSERT	INTO	class	(class_list)

VALUES	('aves');

INSERT	INTO	class	(class_list)

VALUES	('agnatha');

INSERT	INTO	class	(class_list)

VALUES	('chondrichthyes');

INSERT	INTO	class	(class_list)

VALUES	('osteichthyes');

Create	sp_id	table
DROP	TABLE	IF	EXISTS	sp_id;

CREATE	TABLE	sp_id	AS

				SELECT	DISTINCT	lower(binomial)	AS	binomial

				FROM	shapefile_upload;

Add	columns	to	sp_id	table
ALTER	TABLE	sp_id

ADD	COLUMN	sp_id	serial	PRIMARY	KEY;

ALTER	TABLE	sp_id

ADD	COLUMN	genus	text;

ALTER	TABLE	sp_id

ADD	COLUMN	epithet	text;

ALTER	TABLE	sp_id

ADD	COLUMN	class	text;

Check	for	duplicates
SELECT	*	

FROM	sp_id

WHERE	binomial	IN	(SELECT	binomial

														FROM	(SELECT	binomial,

																													ROW_NUMBER()	OVER	(partition

	BY	binomial	ORDER	BY	sp_id)	AS	rnum

																					FROM	sp_id)	t

														WHERE	t.rnum	>	1);

Adding	constraints	to	binomial	field	in	sp_id
ALTER	TABLE	sp_id

ALTER	COLUMN	binomial	SET	NOT	NULL;

ALTER	TABLE	sp_id

ADD	CONSTRAINT	constraint_name	UNIQUE	(binomial);

Partitioning	binomial	field	to	genus	and	epithet
UPDATE	sp_id

				SET	genus	=	split_part(binomial,	'	',	1),	

				epithet	=	split_part(binomial,	'	',	2);

Add	ITIS	ID	to	the	master	sp_list	where	applicable
UPDATE	sp_id

				SET	itisid	=	itis.longnames.tsn

				FROM	itis.longnames

WHERE	lower(itis.longnames.completename)	=	sp_id.binomial

;

Add	sp_id	value	to	the	range	data	staging	table
UPDATE	staging_table

				SET	sp_id	=	sp_id.sp_id

				FROM	sp_id

WHERE	lower(staging_table.binomial)	=	sp_id.binomial;

Check	for	null	values
SELECT	*

FROM	staging_table

WHERE	sp_id	IS	NULL;

Add	NOT	NULL	constraint	to	the	sp_id	column	of
the	range	data	staging	table
ALTER	TABLE	staging_table

ALTER	COLUMN	sp_id	SET	NOT	NULL;

Cleaning
VACUUM	ANALYZE	sp_id;

Partition	binomial	field	into	two	parts,	copying
the	first	part	(genus)	to	a	newly	created	column
ALTER	TABLE	shapefile_upload

ADD	COLUMN	genus	text;

UPDATE	shapefile_upload

				SET	genus	=	split_part(binomial,	'	',	1);

Create	table	of	genera	names	and	their
respective	classes	from	the	shapefile_upload
table	to	be	used	in	the	future	to	determine	the
appropriate	class	when	a	range	map	is	imported,
as	this	information	is	not	traditionally	stored	in
the	attribute	table
DROP	TABLE	IF	EXISTS	genus_class;

CREATE	TABLE	genus_class	AS

SELECT	DISTINCT	lower	(genus)	AS	genus,	class

FROM	shapefile_upload;

Check	for	duplicates,	just	to	be	sure
SELECT	*	

FROM	genus_class

WHERE	genus	IN	(SELECT	genus

														FROM	(SELECT	genus,

																													ROW_NUMBER()	OVER	(partition

	BY	genus	ORDER	BY	genus)	AS	rnum

																					FROM	genus_class)	t

														WHERE	t.rnum	>	1);

Cleaning
VACUUM	ANALYZE	genus_class;

Add	class	to	sp_id	table	based	on	genus	portion
of	the	binomial	name
UPDATE	sp_id

				SET	class	=	genus_class.class

				FROM	genus_class

WHERE		lower(sp_id.genus)	=	lower(genus_class.genus);

Create	final	range	table	which	all	range	data	will
be	pushed	into	once	cleaned
DROP	TABLE	IF	EXISTS	sp_range;

CREATE	TABLE	sp_range

(

		gid	serial	PRIMARY	KEY,

		sp_id	int,

		geom	geometry(MultiPolygon,4326),

		presence	integer,

		origin	integer,

		compiler	text,

		year	integer,

		citation	text,

		source	text,

		subspecies	text,

		legend	text,

		seasonal	integer

)

;

Insert	entries	with	a	sp_id	value	into	sp_range
from	staging_table
INSERT	INTO	sp_range	(

sp_id

,	geom

,	presence

,	origin

,	compiler

,	year

,	citation

,	source

,	subspecies

,	legend

,	seasonal

)

SELECT

sp_id

,	geom

,	presence

,	origin

,	compiler

,	year

,	citation

,	source

,	subspecies

,	legend

,	seasonal

FROM	staging_table

WHERE	sp_id	NOT	NULL;

Add	NOT	NULL	constraint	to	sp_id	column	in
sp_range	table
ALTER	TABLE	sp_range

ALTER	COLUMN	sp_id	SET	NOT	NULL;

Cleaning
VACUUM	ANALYZE	sp_range;

VACUUM	ANALYZE	trait_data;

VACUUM	ANALYZE	specimen_list_hedges;

Adding	contraints	to	the	genus_class	table
ALTER	TABLE	genus_class

ALTER	COLUMN	genus	SET	NOT	NULL;

ALTER	TABLE	genus_class

ALTER	COLUMN	class	SET	NOT	NULL;

#####	Add	primary	key	to	genus_class	table

ALTER	TABLE	genus_class

ADD	PRIMARY	KEY	(genus,	class);

Add	foreign	key	constraints	to	tables
ALTER	TABLE	trait_data	ADD	CONSTRAINT	"spec_id"

				FOREIGN	KEY	("spec_id")	REFERENCES	specimen_list_hedg

es	("spec_id");

ALTER	TABLE	genus_class	ADD	CONSTRAINT	class

				FOREIGN	KEY	(class)	REFERENCES	class_list	(class);

ALTER	TABLE	sp_id	ADD	CONSTRAINT	itisid

				FOREIGN	KEY	(itisid)	REFERENCES	itis.longnames	(tsn);

ALTER	TABLE	sp_id	ADD	CONSTRAINT	class

				FOREIGN	KEY	(class)	REFERENCES	class_list	(class);

ALTER	TABLE	sp_range	ADD	CONSTRAINT	sp_id

				FOREIGN	KEY	(sp_id)	REFERENCES	sp_id	(sp_id);

Join	range	data	to	sp_table	to	get	class	and
create	view
DROP	VIEW	IF	EXISTS	vw_sp_range;

CREATE	VIEW	vw_sp_range	AS

SELECT	a.*,	b.class,	b.binomial

FROM	sp_range	as	a

JOIN	sp_id	as	b

ON	a.sp_id	=	b.sp_id;

Create	table	from	view
CREATE	TABLE	view_sp_range

AS	SELECT	*	FROM	vw_sp_range;

ALTER	TABLE	view_sp_range

ADD	PRIMARY	KEY	(gid);

Adding	sp_id	column	to	trait_data
ALTER	TABLE	trait_data

ADD	COLUMN	sp_id	int;

Inserting	appropriate	sp_id	value	into	the	sp_id
field	of	the	trait	data	table
UPDATE	trait_data

				SET	sp_id	=	sp_id.sp_id

				FROM	sp_id

WHERE	lower(trait_data.species)	=	sp_id.binomial;

Adding	accuracy	indicator	column	to	the
observation_point	table	(specifically	so	one	can
exclude	points	digitized	from	a	scanned	map
since	they	will	be	coded	as	2	for	this	field)
ALTER	TABLE	observation_points

ADD	COLUMN	accuracy	int;

THE	END	(for	now)

